Rank-width and Well-quasi-ordering of Skew-symmetric Matrices: (extended abstract)

نویسنده

  • Sang-il Oum
چکیده

Robertson and Seymour prove that a set of graphs of bounded tree-width is wellquasi-ordered by the graph minor relation. By extending their methods to matroids, Geelen, Gerards, and Whittle prove that a set of matroids representable over a fixed finite field are well-quasi-ordered if it has bounded branch-width. More recently, it is shown that a set of graphs of bounded rank-width (or clique-width) is well-quasiordered by the graph vertex-minor relation. The proof of the last one uses isotropic systems defined by A. Bouchet. We obtain a common generalization of the above three theorems in terms of skew-symmetric matrices over a fixed finite field.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rank-width and Well-quasi-ordering of Skew-Symmetric or Symmetric Matrices (extended abstract)

We prove that every infinite sequence of skew-symmetric or symmetric matrices M1, M2, . . . over a fixed finite field must have a pair Mi, Mj (i < j) such that Mi is isomorphic to a principal submatrix of the Schur complement of a nonsingular principal submatrix in Mj , if those matrices have bounded rank-width. This generalizes three theorems on well-quasi-ordering of graphs or matroids admitt...

متن کامل

Well-Quasi-Ordering of Matrices under Schur Complement and Applications to Directed Graphs

In [Rank-Width and Well-Quasi-Ordering of Skew-Symmetric or Symmetric Matrices, arXiv:1007.3807v1] Oum proved that, for a fixed finite field F, any infinite sequenceM1,M2, . . . of (skew) symmetric matrices over F of bounded F-rank-width has a pair i < j, such that Mi is isomorphic to a principal submatrix of a principal pivot transform of Mj . We generalise this result to σ-symmetric matrices ...

متن کامل

An Upper Bound on the Size of Obstructions for Bounded Linear Rank-Width

We provide a doubly exponential upper bound in p on the size of forbidden pivot-minors for symmetric or skew-symmetric matrices over a fixed finite field F of linear rank-width at most p. As a corollary, we obtain a doubly exponential upper bound in p on the size of forbidden vertex-minors for graphs of linear rank-width at most p. This solves an open question raised by Jeong, Kwon, and Oum [Ex...

متن کامل

The (R,S)-symmetric and (R,S)-skew symmetric solutions of the pair of matrix equations A1XB1 = C1 and A2XB2 = C2

Let $Rin textbf{C}^{mtimes m}$ and $Sin textbf{C}^{ntimes n}$ be nontrivial involution matrices; i.e., $R=R^{-1}neq pm~I$ and $S=S^{-1}neq pm~I$. An $mtimes n$ complex matrix $A$ is said to be an $(R, S)$-symmetric ($(R, S)$-skew symmetric) matrix if $RAS =A$ ($ RAS =-A$). The $(R, S)$-symmetric and $(R, S)$-skew symmetric matrices have a number of special properties and widely used in eng...

متن کامل

Minimum rank of skew - symmetric matrices described by a graph ∗ IMA - ISU research group on minimum rank

The minimum (symmetric) rank of a simple graph G over a field F is the smallest possible rank among all symmetric matrices over F whose ijth entry (for i 6= j) is nonzero whenever {i, j} is an edge in G and is zero otherwise. The problem of determining minimum (symmetric) rank has been studied extensively. We define the minimum skew rank of a simple graph G to be the smallest possible rank amon...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electronic Notes in Discrete Mathematics

دوره 22  شماره 

صفحات  -

تاریخ انتشار 2005